Submitted by Richard Smith on June 25, 2019 - 09:57
There is an interesting new trend in using Computational Fluid Dynamics (CFD). Until recently CFD simulation was focused on existing and future things, think flying cars. Now we see CFD being applied to simulate fluid flow in the distant past, think fossils.
CFD shows Ediacaran dinner party featured plenty to eat and adequate sanitation
Submitted by Richard Smith on May 31, 2019 - 09:55
Let's first address the elephant in the room - it's been a while since the last Caedium release. The multi-substance infrastructure for the Conjugate Heat Transfer (CHT) capability was a much larger effort than I anticipated and consumed a lot of resources. This lead to the relative quiet you may have noticed on our website. However, with the new foundation laid and solid we can look forward to a bright future.
Conjugate Heat Transfer Through a Water-Air Radiator Simulation shows separate air and water streamline paths colored by temperature
Submitted by Richard Smith on July 14, 2017 - 08:11
It turns out that Computational Fluid Dynamics (CFD) has a key role to play in determining the behavior of long extinct creatures. In a previous, post we described a CFD study of parvancorina, and now Pernille Troelsen at Liverpool John Moore University is using CFD for insights into how long-necked plesiosaurs might have swum and hunted.
CFD Water Flow Simulation over an Idealized Plesiosaur: Streamline VectorsIllustration only, not part of the study
Submitted by Richard Smith on June 23, 2017 - 10:08
Fossilized imprints of Parvancorina from over 500 million years ago have puzzled paleontologists for decades. What makes it difficult to infer their behavior is that Parvancorina have none of the familiar features we might expect of animals, e.g., limbs, mouth. In an attempt to shed some light on how Parvancorina might have interacted with their environment researchers have enlisted the help of Computational Fluid Dynamics (CFD).
CFD Water Flow Simulation over a Parvancorina: Forward directionIllustration only, not part of the study
Submitted by Richard Smith on June 1, 2017 - 13:01
The recent attempt to break the 2 hour marathon came very close at 2:00:24, with various aids that would be deemed illegal under current IAAF rules. The bold and obvious aerodynamic aid appeared to be a Tesla fitted with an oversized digital clock leading the runners by a few meters.
Early on in the dash to develop ever faster racecars in the 1970s, aerodynamics, and specifically downforce, proved a revelation. Following on quickly from the initial passive downforce initiatives were active aerodynamic solutions. Only providing downforce when needed (i.e., cornering and braking) then reverting to a low drag configuration was an ideal protocol, but short lived due to rule changes in most motor sports (including Formula 1), which banned active aerodynamics. A recent exception to the rule is the highly regulated Drag Reduction System now used in F1. However, road-legal cars are not governed by such regulations and so we have the gloriously unregulated Lamborghini Huracán Performante.
Active Aerodynamics on the Lamborghini Huracán Performante
Submitted by Richard Smith on April 19, 2017 - 15:14
Fluidic logic (fluidics) uses specially designed fluid paths to perform logic operations, such as AND, OR, and NOT gates. In electronics logical operations underpin all the digital devices that depend on CPUs for their brains. Using Computational Fluid Dynamics (CFD) we can quickly explore potential fluidic components.